y-30-57 24 (REV)
A STUIY OF PSYCMOLOGICAE PATEERNS IN LEARNING ELGMENTARY MBTHEMATICS. RESTLE: PRANK

Cx
8R-5-8059

- -66

EORS PRICE MF- $\$ 0.18$ HC- $\$ 4004$:OLP.
*MATHEMATICS. LEARNING PROCESSES: *PSYCHGLEEICAL STUSIES. ELENENTARY SCHODL STUDENTS, SECONDARY SCHOOL STUUENES: *COLLEGE STUOENTS. *THOUGHT PROCESSES. PROELEF SOLHENG DLDOHEMGTON, ingiana

THE STUDIES REPORTEQ WERE ATTEMPTS TO EEARM THE INHER AKRANGEMENT OF DOHNE METHEMATICS. MATHEMABICS WAS VIESED AS A MATTER GF SOLVING phastens uF hotouter of brees perforten as an aleanitum. THE

 PROCESSES STHOLEO NERE BS SCHOAL CHILONEN 12 SCGUE CHLLOREN DIVIBEO ACCOROLAG TO EGE ANO 50 COLLEGE STHDEWISO STUOEES
 THE ELEMENTS Of A mathematiche Taske (JNI
U. S. DEPARTMENT OF HEALTH, EDUCATICN AND WELFARE Office of Education
Thls document has been reproduced exactly as received from the person or organization originating it. Points of view or cunnions stated do not necessarily represent official Ofeice of Education position or policy.

Subuitted by: Frask Rest3e, Ph. Do
Professor ar Paycholegy
Indiena University
BLocmingtong Indiana

3966

The research repoxted hesefn was supported by the coogeradive
 of Health, Bdacetion, and Heifure.
\qquad

Problem

The glemotous pasit of mathematics is nolving original problenis.
 answers and simplifying complicated expresisicer. The fro kinds of actisitien are complemontary, at least fow the mathematician, wose ideas give life to his felculations, but faese calculations are the bone and muscle of his reaults. For many children who will not be mathematicians, the ability to calculata accuxtely, rapidyy, sind to ceiculate the relevant answer, is of great value. It is true that very large and repetivive calculations are now inumed over to electronic couputers, but, (a) many practiceij cainulaticos are too gmall to do on a cosputer, for the answer can be obtained before the problem is even programed for the computer, anf (b) jrogramitas a computer to calculate 18 itself a procese rathel line calculating.

Colculation has been lititle studiad by psychologists, sho have preterrid to study problem-301ving end thinking. the remariseble studies of Jean Piaget, Margaret Donajdson, and many othern in "children's thiriking" often heve deall; with problems tait intolve veny little calculation. If we wish to stuany the pure process of thinicing, then the succeas of the pscicess shovad not be obscurca by mere alive in calculation. Horever, tisis obvious point has led psychologests arry trow any sort or celcivation.

A near exception is the studiell of processes of solving problems
 This greup have witten computer programe, with "haurietce" assumptions
buthe in, to perform tesks such as continuing partiail semes of numberg, etce thainy of the probiems are model caiculations, but differ Irom ordinery mathematics in thet (a) the necesseny informetion for a crapletit solution is not getven, (b) the takk is not taught als such in school, and (c) there is no panticmiar use for the skill tested. Theac thaie propenties geem to be characteristic of pzoblems that are most useful in Inteliggence torss.

The preaent reisearch is based on the assumption thet ordinawy methematics is soth userul ana interesting: In asensey it is trivisl to add colum of nurbers. Thett is, no new results are likely to be chtakiza serm a mathenatical etandpoint. However, the texa "trivial" may chsezaie the triue value of the cperations. Pirist, the answer to the sum of columin of numbers mey be interesting. If the numbers are the mounts of cifecks written last eonth, then the sum is the
 eving practicul piece of information. \therefore If the numbere are the nump bers of ercore mide at varteus etages of practice in a learning expexinioty then the sums are the svaiues of the learning curve, and have scientific interest: "It wight be argued thot wading acolum of numbers xasuite in orserus fact more orten thein ony olkez known mathematicule operation.
\% Secondy matig e colum of numbers is an axamie of a procens of

$$
\begin{array}{r}
1347 \\
+3857 \\
5204
\end{array}
$$

can be thought of es recucing a compzex expressicng wis

$$
2347^{20}
$$

$+3851$
to its cancuical or simplest fox, "5e0h.
It huppens that for every set of nimbert to be adadi, the sum of overy set of integeris or rationail numetre, there is a winque cemoni cal

 of

 "2dutione conitimion", but thin does not man that the outecue is known befory the prucess is carried out.

Althongh we have sone uncerstancings, in genesal wey, of the matheagtical nature of edaine colvman of nurbers, it is remarizeble that have so little yaderatendiug of the paychology of this process. Ifike other calcuiations, adaing a colum of numbers sey be thougat of as) on algorithm, and thila bxinge to mind tivo quentionis. Firat, whet
 combined into the whole semat process?

In adaing numbers, we should not be too aure that we know what the clementary stages are. Foliloring an orilinany method as the writer hincelf perform the task, ccnaiser sading by the umal sethod as if it were a cemputer programb the progran is sketchad belorp, though of counce the information given belo is insufficient to find where to waite tho mavers; hor to carry, etc.

Hoisce that esch column of the numbers is made up of a clacin of 100p of subugnocesses: including saiding new nuribers to a prenext sum and than ciledidng to see 42 awe is st the end of the colww. Paychom logicaily, maing 7 to presentosin of 25 may be relativeis complicatees, and is not eanily perfoined by a young child. At each chasge of
 Thus, there are a nuiber of "instivetions" or steps, and a mubar of decialons to be made, within this algorithm. Farthermore, the algo rithe, since it contains 100 ps , reprenentis sexial procens in which

 ampleatsin

A paychological anaiysis may approach the problom from saveral other dimections, fdaing, certainly, invoives a good bit of mancxys; we morely remember trest $5 \div 8=13$. A fairivy large stors of permsiazat iniormation is explojed. Whether it is subject to confusion, delays in access, etce, is a question of some importance. Aliso, adding by the usual methods requires the use of some shoxt-term memoryonthe child matcreamabox his "present sumi and some other infoxmation, must not lose track of were he is in the probleme stc. Similarly, the ohild must remamber where he is in the algorifthin. In addition, number menst be perceived without exror. Fineling, angwers nust be written dom correctiv, in the right place. All of these aub-activities are possible sources of delay or error.

The problems of these faventigations, is to ditermini more sonat the actual soxsces and symptoms of difficuity in simple arithmetical tanks, with the icpe (a) of learning moxe abcut human cognition swa (b) of laying the foumdation iof a sensible pedogosy of mathematics.

Theoxy
Do childrex "naturally" arize at corxect anpwesp? Tr we believe that they do pe ghoula tudy thinking in a gegative fashion, for
 some dector mant be foum that intertored with the chatid' metural proclinity to calculate correctiv. This point of view is most eccu-
 which inevitaple ried porces eitract the mind to the tran apurae of
the difficurlty then minn aboat and carbine to plycduce the solution. Onisy nigidap, ordinarily induced by bad teachang, cas prevent this natureni preseas from proceading to its charming conciusion.

In opperition to this romantio position stands Flaget, with his asdertion that the young child is by natiure rigid and unable to computs. ana anify devillogs flexibilitury, the ability to be carried by the structure of the sitilation to tial proper anewes, by a semies of new devilorments leading 110 gsoupseats ane operational thiniking.

The present studine difiers.isom Plaget's ushal oxientation in
 than on the generel abilitioe and lovels of devolopment stivaited by Plaget. It is natural, will the intereats of the Geneva laboratory, that the tasks should be chosen not for istrinsic interest but for tie informitics they purportedis ildirer os the thought processes of the caila. Thersiore, probleas in "sonamrwation" of valumes, in number
 tsinetis topice of atukf. The hinin is askeit what moves the tirees on a breens day, cr is required to eftre simple yroblems with a balence.

Such tasks are choseng ustailiy so as to minimize the amourct of calculation required, becasue the inveatigator is interested in general jevele of developerent, not in the mare riechavice of manipulating symbols. As a gesuit, auch investigaticns tell as almost nothing about how children calcuiate.

A thecry dorived from soxp ithe weget a will aitrivute solution of a gaven problem to the general ability, developed by the cafid. to
yerform operstions with the required jevel of abstractness mat the required flexibility of interrelationship. The anaiysis may inciude the fida that specific relationships, not orly "levols of ability" mast be pressint: but this zerely leads us back into the educational and pryciologieal history of the child,

The prenent theory has three parts. Firsts the assumpticns and Q fomantary cengequences of "discrimination-1earning" theory will be stated. Second, the general idea of aigomthma and their ajplicmion to elearantany mathematies will be outinned. Finalisy, an integration of the tro sets of deas will be attempted, in the way of asking how the child will exide his algorithale belasior by disgriminations.

piscriminaticn-Learning Theory

Disériminationicarning Theory is a agt of experimental findings. conracted by cowcion underlying assumptions, that csan serve as the besis for gredicting bebevior in more complex aituations. In this, it is like clasicalncceutitioning theory and Skinnerian qperrat-conditioning theorys.

The conditioning theories center on the idea that ienming reauits In the formation of sew rouncctions botreen stimuls ani responees. If a is is fallowed by a UCS, a conaitioned sesponse CR will appear, attached to the CS. If S is folloved by R and ti by a reinforcement, in sxinnoman theory, then the comvection of R to B is strengthouna.

Dencrisnination-Leaming Theoxy ls concerned, not with the pormation but with the geloction of appropriate rasponses to atimul.

In its simplest form, the theory deals with a sequence of trials of training on each of wifich a atimulus situation is shown and a "correct anower" indicated.' In amaintratuing, the animel is requirea to make a. choice response eath triel, then is either revaried or punsined depending on whether he is correct or not. ... The cosrectneas of ereaponse is indicated only by the reward or puaishment. This is trialmanco sxyor learning

The sub̂ject; faced with auccessive trials of such a problem. establishes a pattern of responding that may be cailied a "strategs". By a strategy is meant a paittern of responding that provides the subject with a reaponse to esch of tize situstions presented in the problem. Thet is. Discrinination Leaming Theory does not assume that the subm ject aequitres each part of his behavior gattern indepandentiymon the contraxt; it assures that all segments of the seharior syrten are orgenizea trout the beglnning.

IT the subject isets with success, that $4 s_{\text {g }}$ if he attains a prom coxtion of restras over punishment that is high reilative to his

Whe subject is concetred to have avaliebin a sixed set, of strat--gies 13 : Same ar these stretegies, (not necessamits a unfque one),

 by C. sther strategies are implevant to the problem at rand, sad

If Follored lead the subject to unsajisfactory periozmance and "failure". It is understood that such irrelevant atrategies, the set I. may lead to temporery or partial auccess.

If S la constituted misy of the sets C and I, 30 that $C U I=S$, then we have a relbuively simple experimental problem. The subject begins the problew in choosing sowe one strategy ait random fram S. If the strategy so chosen is in C, the subject begins at once performang correctiy. If the atrategy is in $I_{\text {i }}$ than arintueily and before leag the subject experiences failure, and then resamples from the ser S. with replacement. (That is, the set S is not changed.) If this as alsc an irrelevant strategy, in element of the set I, then later the subject will again resample. He reaamples over anz over until he happons to hit upon a correct strategy, in the set \mathbf{C}. Since that strategy leads to success, the subject dose not ciange it, and his performance will stabilize at success.

In this simple situation there are several properties of the behavior that are of theoretical and practical interest.

1. Performance or "learning" is allmoranone.

Proof: If the aubject has an irrelevant strategy he must recample, and that puts him back in the situation of aargiling at which be atarited. Thus, until he hits a strategy in set C, the subject makes no partial progroes.

[^0]Proof: The probability of zero arrors is the grobabllity that the first semple is correct, which we call c. Suppose tre sub-
 1-c. Then he cextainly suffers a failure. If he then samples and enooses a comrect strategy, (probability e), the first failure will be the osly cie. Therefore, the probability of exactiy oxe faslure is (10 c) © To suffer exacily n failures, the subject must choose ingetevint atrategies the first n samples, with probability (1-c) ${ }^{n}$, thio choose e comect strategy so as to end the failures. Thue, in general, the probaility that T, tosal failures, equais n, is ex̃ven by

$$
P(11 \leqslant n)=(1-q)^{n_{c}}
$$

a georetric distribution, it is cailea a geowetric distribution becuse the sequence of numbers, $c,(1-6) c,(1-c)^{2} c$ etc., form - gevetric progression). Furthermore, the parameter c of that distribution is the probability of samping a correct strategy given the subject resamples.

Corollaises: Elementary probability thexy tells us that the meai total tailuree, given the above model. and the variance of total failures, are
[1]

$$
s(T)=(1-c) / c
$$

[2]

$$
\operatorname{Var}(\boldsymbol{T})=(2 \mathrm{c}) / \mathrm{c}^{2} \mathrm{~m}
$$

and is slightily larger than tide mean. The data are highly varlable. Furthormore, the geowatific distributicu is. I-shaped, with its mode at zero failutes.
3. The speed of 1earning depexals upon the probsbility of chocsing a correct stratergy.

Proof: From point 2 ebove, eapecialsy Equation $i_{\text {i }}$ Notice that as incteaser tie fraction (1-c)/c decriaseg-mence as the probabilfty of chooting a correct atratosi!. C, zecomea Iarger, the

Remark: Mean total fatiursa, $Z(T)$, is a useñlin index of "difetcrity" of the probiem, and we shall think of "rapid 1esmingin as Hreducea men errorso
4. Lat any get A of strategias a subset of S, zave a measure $m(A)$. We consixite $m(A)$ as the tendancy ter the aublersin sumen he sampies frem S conteining A, to choose his ample frem A. an watnce $s=C U I$, and C hes no ciements in cowmon with I by definiticn, it tojiows fron elementary meanuse theosy that

$$
\begin{equation*}
y(s) \quad m(c)+m(I) \tag{4}
\end{equation*}
$$

Hos C, the probebility ot bhocoing = indyety strategs, is defined as

$$
c=\frac{m(\rho)}{m(C)+m(I)}
$$

5. Othos tainge equal, the speca 0 leabning can be thevedseatoy adating athennetive soxpect otrategies to the probsem.

Frpof: Syppons that the cxiginel net of correct strategies

 gtrategies $4 B$
and gince the tro are disjoint,

$$
c_{n}=c_{0} \cup c_{a}
$$

[6]

$$
x\left(C_{n}\right)=-\left(G_{0}\right)+m\left(C_{a}\right)
$$

There is no yessen to beliert that edding netrelutant strategies shocula change the net of isrolerant strategied wo we assuris thit the

$$
\begin{gathered}
I_{2}=I_{0} \\
=I_{0}
\end{gathered}
$$

The total sets of strategies ape also differents of conge;

$$
\begin{align*}
& \mathbf{S}_{0}=\mathbf{C}_{0} U \mathbf{U} \\
& \mathbf{S}_{\mathrm{p}}=\mathbf{C}_{\mathbf{n}} \boldsymbol{U} I
\end{align*}
$$

Putting infls togetifer, We find thet the propontionsor contectatiategies, 01d and rew, are
where
wis

$$
c_{n}=\frac{n\left(C_{a}\right)+m\left(C_{a}\right)}{2\left(C_{n}+T^{+}\right.}
$$

and fuel syatems, but the two mey be intermired and simiar in general topoannce ingide a trucin motore. If ail parts of the trensmesion are (in a training venicie) painted yellow, and all parts of the flued, system are painted red, then these color cues are the besis for a number of new strategies. The result is that the trainge can more rapidny discrimikate the two syatems. Ais we gee belong he may not be able to woxk wn regular trucke aftewards, howerer.

The Prool of Point 5 is relatively complete ana eluborate. Since the arguments are elomentary thioughout this section, they wiil be given in relatively sketchy fozm. It is to be understood that each particular point should be apelied:out in coaplete detail.
6. Niter things aqual the npeed of iearning cta be increased by reibeding digtractions, if this has the effect of refiovisig some irrelevant stratucien from $\$$.

Proof: let the original set of iverievant atrategien te
 ank ascume that $m\left(I_{a}\right) \leq m\left(I_{0}\right)$: Then since ofhar things are kept

$$
c_{0}=\frac{m(C)}{m(C)}
$$

둔눈
sad
c_{2} 垂 greater than c_{0}. - 14

 Thea the propoxtion of relevant strategies is

$$
\begin{equation*}
c_{x}=\frac{(c)}{m(c) \div m\left(I_{x}\right.} \tag{7}
\end{equation*}
$$

From Bq. 1_{8}

$$
g\left(W_{x}\right)=\frac{1-c_{x}}{c_{x}}
$$

and subatituting the reuruits of Eq .7 .

$$
\begin{aligned}
g\left(T_{x}\right) & =\frac{\frac{m(I)}{m(C)+m(T)}}{\frac{m(C)+m(T)}{m(C)}} \\
& =\frac{m(I,}{m(c)}
\end{aligned}
$$

 ticnal to the measuse ixtelevent atrategics.

Disersaion - One application of this iden is to the schoolis rociey when the childine are lively and moving about the walle are "s,

 stratagle with reaplet: to eny particular tack they are to work on.

 *
by adaing new correct atrategies, but by changing the ampling probam bilities.

Point 8. Other things equal, the rate of learning can be incraased by giving the sulject a useful record of stratipgias he has
 strategiea tried, and after each tailure he will have a higher probability of hitting a correct strategy.

Discussion: If the learner uses the recosi to eliminate strategies he is not empling with replacement from a fixed ret S. The notion of learning by systrinatic elimination chus transcends gimple discrininaticnamearning theory.

Point 96. Mransfer of training tran se simple diserimination to anotbor occurs all-oz-none.

Prooff Call the tasks A and B. Suppose the subjeet has ahosen a particuiar strategy s to selve problem A. When given the first trial of problem in . he presurably uses the gane strategy a if he can. If s is atso a successful strategy in probilem B, then he transfers perfectle ("apin)

Nisur suppose that etrategy a does not appiy in problem B at all, :ง the rubject cconot use itan Then he mist begst eqemisug on, problem B Just as if ho had np eariler training ("none").

The oniy remainirf possibility it that the abiech cen apply wa
 the gubdeet presumebly quat rapingle, and is agaill fust like a subject with no previous traintag ("none").

Point 10. If'a subject suffers so mach se one fotinure in trenater, then his expected future pexformence is the sme an if he had no previcos training.

 is not transfarining "all". Hence the tronster matt be noney tram Point 9 a.:

 a strategy given it is chozen Iron C_{A} is eleflazt of $\boldsymbol{A}_{A} \cap C_{B}$

Discussion; This again is simply s reatatament frecr the proof
 Consider that the subject had no training that hranaferced to Task A: Tresk A is the stinnting point. Then the probabilisty of transfer to Tack B is given by

Apricetion of Discrinination-latitin Theove

te the Eyetrance of yritumen
chedrist dading e colum of numbers or counting the penaises on a

 Discrimiteticomerning theoms

For oxample, cousidex a child counting pennies, He must. rizat, discriminate the pennies from whatcrer brrelevant gitmul way be about. This, in turny will be easy if there are no soner contusing objects about. If no other coins are preaent, then mere scoutuness can be used as the basis for discrimination, though it chere are dimes in the pile adaitional ares of color, and size must ke employed. Thie shows hors: hy simplifyiag the situation, one can make more atrotegies relespant. 3imilaris, if all the coins to be counted are physienily ciose tegether, then location can be the basis of a discrimination of the set to be counted. Duning the process of counting the child mast alweys be aple to discrininate betreen the set of coins already; connted, and these still left to be counted. This discrimination mey be greatiy aidea by moving the coivs from one pile to another; adding ner strategies based on 3ocation.

Discrimination learning theory would also hold that this, and any otheit discriminations needed, woula be easier if distract'ons are rewrid: 'In sathematics this mey mean' both improving general working conatiloris, and also study of the desige or questions; many of which inciude infeievent or unecessary informationifor:suggest many inapprom yriate strategies.
:- The quastice at transfer of-tresining is the most delicate. The allivomncee tratafer theory anising from discrimination-learning theory
 y Trilure $1,-t r a n f e x$

A child becomes quite skillitul at answering the foliowing sort of "Word Problems". "Weacy is 22, John in 7o What is the difference in age betwreen Nancy and Jchni" Our child is teught to do this by 2istening for the word "difference" and being told to subtract.

Another problem is given. "Fancy is 3 years older then Maxys, and Mary is 2 years older then fickin. What is the difference in age betweon Mancy and John? ${ }^{n}$ Using the strategy that solved the earilez problem, the child subtracts; 3-2×1, and he afiers the kwore that Hancy 1s. cafe yeen clder than Joinn.

In this situration the child has found a strategy that solved task A (any task in which the difference is fornd bubtracting) but now fails on the new problen; in which ditferences are ofisen axd mist be andac. In this case s the ola sitratezy applied brit leeds to failure.

This possibility illustrates an inportant cheracteristic of discximination-learning theory and its approach to learning. After a given problem ta mastared, according to diacriminesion-learning theory, ue still do not nacessaming know what strategs the subject is ming. All we know is that the strategy ine isiusing, wherever it is, is good enough to solve this particular probleim. Therefore, it may come 38 a ourprise to the teacher that the ghild having answered a whole seguence of "difference" prablema correc̣tiy: suddemiy gives a "gtupid"
 Wae machated by a strategy not intended by the tescher.

AIgoxithms

An algorithm is a recipe for mathematical or other activities, including metheds of making all. necessary decisfons. If it is followed exantiy it almays terminates, and always yields the correct answer. Any set of problems that can be nolved by algorithms are "crivial" in that ne intelligence or mathematical insigits, pad no luck, are needed to solve them,

The theory and methods of algorithms are now sonsidered, not trivial, but quite tine contrary, for any problem chat will yiela to an algorithe is "compixtable" and can be handled by a digitel computer.

The general. theory of algorithms is extremely precise and formal, and not appropriate for this context. However, some obvious properties of alsorithing may be mantioned to suggest hon a psychological anelysis may be perforwed.

An a'gorithm is a variation or elaboration of a system organized as follows:

The pair of parts labelled OPElanION and TESI fomm a lopg, in that the operation mas be repeated over and cver. A curpletely closed loop would he repested inefinitely oftan; but the mess step pyovides a basis for stopping the algoxthm,

2

3n paychological problems, a cerrein situation is eatered at START. The step OFKRATHOM modifies the oftuation, and the step rist corresgonds
 on the relation or situation to this eriterion, the elgoritim meg retusa to ORERAITH and again change the situations or mey Eric Prom the sugoritima.

Notice that the above is ainilar to the concept of a Toms andt
 in thesr book, PikMS RND THE STRUCIURE OE BETAVICR.

It is possible to develop more conplex algozithms by using nore then one operation, and then increasiug the complexdty of the ITEST to permit any of severel decisions. A slight complication is the follewing:

in. which two elementary soms unfts are hooked togetang: in the netitern Whove the tro units are hooked up in parailede They may gho gha connected in serfes, as folzors:

 prolimixayy to OFzaniont

Basicaliy, ane mist aiway proceed from smary to an cparebioss and then after an ogeration tiat my be relatively compilcatee, one

 or ax ExTM.

 or aerice of cyeraticno that change the siteation, and tine chease mast be in tine atrection of whaterar situatiom reavits in sn King

This jest requireman is very complinctee to discuse end eveluets. Obviomply, it is a general dascription of a courraber progsam that ioes not heag un ox go ixto sn endiesm joop, wa myone waic has progromed
a cempriter knowa thet the logic of a gord progrem mes be astremely

 gtotioncicicily ilnite : By taic propoweasing otatunent I mean only

故

 \% 0 (fac

 Then whingobability $2-p$, the system Lougs. The probsoility toat

 wis merely choose 6 a sc large thet

$$
(1-p)^{I}<-01
$$

 sily 40 gince the exitexion was equivalant to.

$$
N \log (j-p)<198.01
$$

(Hoteg please, that both jogazithms ase negative). The asore inequality tramsforns to

$$
\text { B }>\operatorname{sog}(.02) / \log (\hat{s}-\mathrm{p})
$$

The seacantoriatic of ε atochasticallyofinite systea is thet tite

 ateps.

 aleorithm in steciasticajus Iinite.

 sech ofinarion-Tise psix can be thought of an an instance of afserimiyation searniug, and on gach pass through tiat State the subject las a possivsiluty of folvize the prosiem, in this cace, gotig to an ExIT
 san be thorght of as yext os a xariov chain, for trie ailoor-none

Test: Is there a mualos thexiv?
is รea, co to Opestexters. If NO_{2} to to onsxation 3 .

meratice

Several ccments about this exemple ase in order. First. it is formainiy s proper algorithm provided the operaiticns are ciefine, and provided thens is a point in the probiem at shich tige trgir will come Gat "100", that 18, the child will axmive at the end of the colum of numbers.

It might be ciofected that OPRFATION 2 includen the concept of "widing two numbers" and it is circular to define a alsoritim ior ading numbers that dyeludes, Witain it, the concegt or adaition. Forso ever, it thy be assumed; fi jeast as an hypothesis, that ihe psychological act: of adding two nuwbers together is less than, sad ditfernt fram, the eat of sumaing a whole colum of now then iwa auribers.
 given above into parts. 动 ney be that withen a gingle operation one cen find a sequence of stens wat tests, whe miter scectines, when tired, is rather bell et arithmetuc, Sugrgee he ritat ata 4 to 3 .

 taid. Taiss, "ADD $37+4^{n}$ becoates whe fotionting atgorithis

```
8GART
```



``` number.
```


 procear ray be baicen dam into its componenteg thongh we wy fine

 distor by hand fif necssasy. The zurpone hore in introdraing the

Macrimintixe Controi, a Algozthans

Hencvor，is wa worla return again and again to an OFMRATION，we
 lation would mersly throw the perforier into an ondiess mint of aimicnal activity．．

Furthempose，foct somplex ceiculcificas ase not the repeat of exactly tie same operation over and over，but instead requise variations In carformace deqeatue upon the current state of the calculatics．

Both in oxter to stax the procsse an to give it the necessary

 the aigorisha syecifing \＆tast，the subject aurt inspect the situation Eivinct no destht hes maxy izmelevant aspects along with those relevent to tix alcositin），aselect from it the essential stimilus charactero istic．Tham ofe of two or more reaponses mest be chosen．It herpens Font fine reayuases are OpKRATIONS rather then simple choices，but it is still goasible to consider the choice process itself by use of Discriminatson Iearniag Theory．
in this way it is conceived that performance of an algoritha intolven performence of geveral discrimination problems．When a child 1eacms an algoritim，he mat learn esch of these diexpminations，and 4 里里： bis ability to perform the complex tasis without ex．＂．and without falme EXTIS（quitting），depends upon his preciaion in discriminatico． The propartica ard clamity of relevant cues，the prepotency of correct

等

 Wis caternaticus.

$$
60 \%
$$

 problers.
 -抎

[^1]

 of adotitiva rag vell be byead the capacity of a nomal chile.

Clandy. then theexy iepilies the exiatence as a hieraschy of dincriminettons-m the tepo disgrixination of types of proslems, and

 end concepte jis givan apecial and paxticular meaning; and through use of Dimerfuinution Iraming Thnoxy: particular quantitative jredictions becrep posedis.

Nethoa

The soudien ropoxted, ane zthenpts to Loarn the inner aryangement

In each strudy we used subjects whe were able to do the component tajks quite well, and who had at least en mequate ability at the whole (attempt to deterimine what consumes the time. In adaitions we plenned to andiyte any errors that night occur, attempting to detexmine their wourcet and thoreby surther identify the sources of difficulty in the taskwe

The basic oxpextmentail design was very simple. A variety of tisks was scastructed, within elach experiment, so essoigoed that different
 aitiferent ovor-all piensw would be sppropriate. In addition, of course, the particuler mitarials wisd and the answer wera yaxied from problem to proillea in the set. Then children or collage stiudanta wera tested on the whole set. Where possible, adequate wempirp and pretraining were given so that there was little trend over trielisy and the order of difficent types of proiblems was counterbalancedy in an attermet to minimive syatomstic effects either learaing or Patigued sinwe each. eubject way testeid on 171 conditions within sa exparimenty difierencen observed coula not be attixibuted to differences in abilityy:

A tort sesmicin woure go through complate net of materiais, all of waich require the seme operation fo.ge, enuperation, adaition, multiplication, etc.) College atudents were teated in the fashion usuaily employed in psychological laboratories being instructed and pratrainea, then tested in one or more sessiona of about 20 mfnutes. Childrem verce treated with more care=a preliminary period was devoted
to esteblisging repport, and the child's astenifon wes eught before esen displey, Each deciexion wes mide fan an atteupty to haye a well-
 best in rapid calculetion.

There is a creason to question the use of speed as a measure of calculation performance, since of course apeed is leas important than accuracy, and sheer success. However, given ample time college strudents and many claildren can perform with high accuracy, Hhat they do, often enough, is repeet a calculation over and "check" the snswer. Repetitions are an fmportant part of realelife calculations, but it seems to us thet repatition is a separate process and should be stadied by itself. By imposing a time pressure, we probably cauacd most subjects to do the problem once only. Since errons were infrequent, we need sors other measure of the difilenlty of a problem, and the time consumed to calcalate a correct answer seems satisfactory. Granted tinat a subject cen adjust inis speed, tradiag quiciners for acciracy, but he preaumably doss not rase thin sdjustment Eeparately on problems of silehtiy different stmscture, Therefore; whetever his compsomse betwesn speed and care may be, we should expect cither more axrsers or more time. probebly both, on difiscult than on exsy probiems.

Enpownent I

ABETMAC
'mathantically, the process of enwergation ts fundamentai. to

 cosstatag.

Tas Process of snumersition
Mansy Beckurith and Franic Restle
Incilan finiverosty ${ }^{1}$

 wariag to the right. Then, it I is the indicator resyonse and T is

 most fe cogetzed, usualiy by the emptiness of U . Me shall nefer to the evore process as "eimple exumeration".

iine, then the trancionnation of che pointing response is is mereay \& wore 40 (asy) the Mgit; and the dircrimination betizeen © suan U cas be mads relefive to the location of the finges. It the objects are in a circle, the transtormation magain be a simple minift in tine clocitom wise direction, but the discriningtion betreen c and \mathbf{v} becomes wore difilicult as the aubject approasises the oxigin of his comption. This may lead to errors, sad perbans to long flelays if the sebject starts over. When the objects to be connton ace all allise, the circular arrangement shoulu be very difficuit though the straigint line is noi
 the circular arrangement ahould becone easier: Witih a rectanguias arisciemint; again there is a simple path, sal there sinould be so difticulty with the atopping rile. In gixple onuseretions the rentur
 gince st pravides sone ontienel paths, mey even introduce belegs. Flnaliy, the ofjects my bexambinit -apmozimately aquaily zpacea but in no peenticules pattera. Tris firces the nubject fo devise a path through the sst; be mist tse somplex gequence franatormations of

 goes eldone.

Sxugie enuaration di noi a coxplete parchoiogicsi deseriptisa of

 Luve exs fungticn in eutating.

 tantly

 nst to bs manited by stegs, but to occur instently. Freeman (1912)
 and Poxf for caficren over efght years; younger chilaren were untastaine. Feraborger (1921) usea randiom arrangements of four to hirelve dots, and Seand that the reiative irequencies of correct responses made a cones thinucus ceival function of number of dots shom. Correct judgments wase made effity percent of the time, (Fernbenger's meanure of visual diccrimination), in the rage from six to eleven dots. Hunter and Bigiot (1950) varied intencity and duraticn of presentation of dots and foud that the ausal vistial lans applied.

One approach to the spancof-apprehension idur is as detection of a number of targets (Schiosberg, 1948; Casperson and Schlosberg, 1950; Restio, Ree, and Kiesler, 1961). This approach deals mainly with percyption of a number of dots under short exposures or poor illumination, but may undermine "he concept of a "magic number".

Warren (1897) arranged whits squares in a vertical line on a black background and measured the time taken to connt them and concluded that four was tine limit of perceptual counting. Bourdon (1908) also used the matiod ot reaction time, and found a amell increse in time a annction of number of dots to be counted. He judged that geven was tins lisait of the number that could be accurately ascertainad at onc glance. Ealtzman and Garner, (1948) used concentric ringe as targets and decidea, thet the method of reaction time was useful for the study of perception of number.

Fous seliski (1924) found that fields of up to six dots or figures

 olaven tot fields and becone more frequent in larger fields. After six dotB, tine plot of reastion time against number of dots becomes mor sestiented and a moze shailon, puaitiveis accelernted cirve appears. From this, Jensan, Resse, snd Reese concluded that the subjects subitise un to sive or six dots.
maras (19ti) studied judgments or aumercanness (thought of as a stifmilus vamleble like loudness), hat belfeved that two mechemisms were invoived, ano uned for up to seren dots, the other for larger fields.

Fe found that juded murerousmeas was decreesed it the lote were meranged into a single figurw, for exmples a circie. Kautimen, Iord, Reese, and Volkmes (2949) also suggested two soparate discriminstoxy mechanisms; one aeting for up to six cots ${ }_{\text {, }}$ the other For jerger collections.

All of these stidics coacentrate upon seaid apprehension or judgo ment of nugber, and ary cast in a fheoreticai framerork drann Incon
 tiant can be apprahended at \approx single glence, even though civilized aduits do not count at a glonca nor do civilized chitiasen.

In aumary, two main methods of studying enumeratica are the taciristoscopis, in which o display is bxicfly dirplayed and fubged, and the reaction-tine experiment, in which the naterial is displexed continuonsiy but the subject reaponis as quiciely pencitile. Both pethods eve percontual in character, though the reaction-time usthod posimits some more complex methode on enumeration to occur. The main questites jus

It in anding thst aztinough avaryone wens that objects are

-lemonts. Following these tenets, the procerss of countisig is rowned to its eldments "perception" of numbers, sad ne effort is expandea" in syntheaizing the process of cometing.

The experments reported below have a difierant cancegt of enumeration. Firat, we assume that enumerrstion is as compoind tasis. but that the true and interesting stracisure of the task is found now
 gecond; we asmum that peragtion of susil ambens boy be skill
 clemaniary mental event. Throughcui, se ahniz ase the reactionming

 Indiana iniveraity.

Aypssatus end Prosequys: That stimalus cards were $81 / 2$ by 12 inea
 oleck lak, Each aubject was ruas moparately, sxitung cerors a table
 arrenges to reduce extermal vicual distrantion,

Esen cari was preandted

 given to tize calieg ntuclents.

Tandeblas wase
a) nuaber of onfecis ve be ccuntea
2)

 doslgn, rupll ested \%ose yes oubject.

Results: Most children employed pointiag and chanting, enoughe ront counteal silentiy and sometimes without poixting, waile college
 211 arisplays waking 106 exross out of 576 counts - 18.4 percent nyrow. with a mean tize of .60 secmus per olifect. The college atudents averaged .30 seconds per object; ant made oniy 11.6 pexcent crraris.

Larger sets of objects took longer so count for soth groups.
 the children and $T=0.35(H-2)$ for the coljege atadansta, whare \bar{t} is a. mean nesction time in seconds and in is the maber of-sbjects to be counted. Since zo measurements were taken with emanin nubaxa of objects, we heve no reason to believe the stratght ilue mixy be extras polated hack without curving. (See Jenseny 0 . aly 2950)

 facter when they enwmarata or thoy mey not heve yot learaed to apply the

When thes cenuot multiplyg college students und pertens chilarse may divide the act of obectuig passibly by werceptual pxincspzes of
 mambers. sets of up to five or six way be subitized by sixilled adult
 onumerations exd adition. Sectengilar arrays eniorse acnvenient subaitision which permito serexai simsiteneous enumerstions.

Insert Tablea 1 and 2 about hëre

Incaed, both gronps coamistestly count the rectanguiar mivity papidyy, but for the sollege studnts the array ot wistes objectis 縕 ospeciainy
 shom that oldey chitirea, end presumbly eolloge studints are tuatar

 2Hes in multypiraticn.

44
of ilgures conly competes with this grouping. Spatiak geouping is more difficult with streatght lines and circles and subjects mey use dism similarities among figures to provide the necessary groupings,

Experiment III

In the first two experimenta, only position and shape of the obm jects were varied. In the third experiment, color variation is also used $s 0$ as to establish alternative perceptual groupings.

The genaral design of this experiment is tased upon earlier studies of additivity of cues in cue-learning (Boume and Restle; 1959; Rower and Trabesse, 1964; Restle, 1955, 1959a, 1962; Trabasso, 1960, 1963). In such experiments several problems are constructed using two or more odimansions. One group may learn to classify drawings based on their sbape, disregarding color. Another group may clacsify drawings using color, disregarding siape. a third group learns a classification in whem color and sinape are redundant, which is aasier than the other two (additivity of cues). Several mathemaical models of cue learning have given quantitative predictions of learning speed based on the number of redundant relevant cues, the number of irrelevant cues, and the weights and strengths of such cues.

Mathe

 intredictory paychoiosy clasa.

Appenutus and Procedure: These ware Identiediwith Experimenti.

Mriterisls and Design: Thixty dispieys, eacis comisting of a coim Lectsor of gaspea cut frgil constraretor yazor ana yasted to $81 / 2 \times 15$ stieett of khite paper, The shapes vere four cozora; brick red, Air
 dicies square, triangis: and parrailelogram. Test items had 12, 15, 16,
 Color and Shapes, the four colors and shapes were segregated, so that one sectios of the flgure was all blue squarea, for example, anctiner part red circle, etc. In condftion 2 , Color, the four colors yere segregeted but the shapes werc scattered randonly over the field. In Cosifition 3, Shape, the iour shapes were segregaied but the colors were scattered randoniy orer the ilield. In Cositition 4. Amhatguous, both the iour coiors sad the four shapes were segregeiced, but differently, 30 that the four circles aight be helf blue and helf red, and of the three toisagles, two might be red, anc one violet, etc. In Condition 5, Bogkom, both color and shape were scattered independeatly and rasdomly orer the fielc.

Hzoothosis: If rapid counting, in the college studenic, depends upes grouging the field of cisjects, then Condition l, having a stroas

 respectively, anould provide estimates of the relative grouping valus
 modes of orgenjaction. If cue mode is much stronger thes the other, tise conaritica shorid be about as tast as the condition expioying only
 of georning gextaps iorcing the suojert to atart orer in inis counclue.

counting rates close to those onserved in Experiment II_{q} scrambled arrengements for college students.

Results: Time to count was a inear function of total nuaber os objects. The results here are very close to thosis obtained with coillege students for the scrambled conditioc in Experiment II. Thi indisatec thet the general findingis are probably quite stable with succosisve samples from this pool of subjects.

Insert Taible 3 about here

As predicted, the Coior \& Shape condition is counted fastest. Condition 2, color cilly, is almost as fast, and Condition 3, Skepe, is slowey; so it appears that color is a much more effective dimension than shape in this experiment. This agrees with nany experimental studes comparing the two variables, varleã approximately as in this experiment.

In these data, shepe segregation has littile advantage over random, Conaition 5. Therefore, it is predictable that the ambiguous condition, having one strong (color) and one very weak (shape) organizing variabje in competition, would be alnost as last as color alone. stotics that it is laster than shape (Condition 3) or random (Condition 5), though a small effect of shape is found in the fact that condition 4 is siower than conditions 1 or 2.

An analysis of variance showed that both the number of objacts and the five conaitions produce significant, $(\mathrm{P}<.01)$, effects on

 rebuito Then no suat grouping was posmibie, the mujace ves zasced to
 to coust one by bue.
 the sect of onjccts is qroxped perceytueity, te accord with Wertheimer's
 then sazyes as a sugesit or basin for cematiag, in that the subject pextoxms his cauntive operetion witinin groups, and then in some feshion connects the various partial counts. One hyysthesis is that college students subitize within each group, that is, detersine the number by a someviait zasterious but very rapid and accurate "perceptual" method. The subject might collect auch numbers and add them at the enc, or might subitize each group and add the reault to a running total.

The fact that fairly young children show great sensitivity to the organization of the visual field, as shown in Fxperinent 1 , suggests what grouping mey ples a more general role in counting. That is, even when a child is enumerating one by one, he may work repidiy and routinely witinin one group, then pause and consolidate or "store" his result in sore way, and tisen attack the neat grous. The pausing, and the ability to civite the task into suitabie paroty, is possibly a genezally important part as a long serial teak.

References

Bouston, Sostran. Sur le temps nêcessaire ponr nominer: less nombres.

Bourrse, L. E., Jr., \& Restie, F. Matheraticel theory of concept identification. Psychological Revier, 1959, 66, 278-296.
 (EA.), Studies in Mathematicel Psychoiogy, Stanford, Cllifornia; Stanford University Fress, 1963.

Casperson, R. C., \& Schlosberg, H. Monocular and binocular intensity thresholds for fields containing 1-T dots. Journal of sxperimental Psychology, 1950, 40, 81-92.

Fernberger, S. W. A preliminary atudy of the range of Fisual apprehension. femerican Journal of Psychology, 1921, 32, 121-233.

Freeman, F. No Grouped osjects as a concrete basis for the nuaber idsa. The Elexrentary School Teacher, 1912, 12, 3060314.
 function of tife tima and intensity of atimulation. Journal of Expestmantal Paychoigsy, 2950, 26, 160-179.

Jenser, E. Mo, Rgese, E. Po, \& geese, T. W. The rabitizing and counting of visually presented ilelds of dots. Iournas of Parchology 1950, 30. 363-392.

 1949. 62, 498-525.

49

Rebtie，F．A theory of discrinination learning．Paschologicai Revier， 1955，62，11－19．
nestia，$F_{0} \cdot A$ metric and an oydering on sets．Fisychomstrisa，2959． als，207－220．（a）

Restie，F．Additivity of cues and trensfer in disemisination of com－ noment clusters．ITournel of Experimentad Psuchologi，1959，5i． 9－14．（b）

Kertio，F．Pgychology of iudgment and chozce．New Yoris：Wiley， 1961.
Reatle，F．The selection of mtrategies in cue learaing．Psychological Revien，3962，69，329－343．

Restle，P_{s} Rae，J．，Kiesier，C ，The probability of ajetecting small numbers of dots．Journai of Experimental Psychology，1961，61， 218－221．

Saitrman，I．J．；\＆Garnez，W．R．Reaction time as a measure of span of aitention．Jouraey or syciaiogi，1948，25，22T－24I．

Scinosbergs ㅍ．A prowability fomulation of the Hunterosigiar effect． Jounnei of Experimontal Psychq10xy，1948，38，155m767．
 Axchives of Psychologex 1941，N0．255．

Trubesso，T．R．Additivity os cuse in discriminatica learnine of
 83－88．

 39．⿷匚⿳

Yon Sxeliski, V. Relation between quantity perceived and the theo of perception: Joumei of Expertmentey Pxaciolesx. 19e4, 1, 135inif.

Woodionth, Ro S. Sck
 Dew Yozs: Holt, 1954.
Footrotes
 the Natronal Science Foxndition to the escone wthor fand bSOE Grant

 Blosningten, Indisna and tomr Richards pomb Princigai, for his copperetisa.

Emperiment II

Rew Cing courler iogio mxprissions

At tia Poundation of all jogic and mathematics is the simple sententiel calculus or logic of propositions. It begins with whole sentences, unanalyzed, which may be true or false, and builds and analyzes compound sentesces. Compound sentences are built from simple or atomic ones by use of the connectives AND, OR, NOT e and some optiosal ones.

A cispactasistic of sentential logic is that one can construct pery complez corbinations of true and Salse sontences, and then step-by step reduce thera to atomic foris, either T or F. The process is to find the innermasi pareatheres, and reduce the innezmoss sentence using the tyuth tabjes.

This procesf wey studie la detail. In order to impove the percoptaal situation he used not couventional perentiseser, but loops aroms ontixely around the axprestion, forming concentric eggs. Mhus. sixutify the Imesmost parentreses did not require counting pargatheses, but yasely fincing the buin's eye.

Further to wat the problem absy experimenters preanted it atepo bymetp, gat

 rexake oins.

MENTOD
Fach of two women Graduate students in the Department of Psychology at. Indiana Unîiersity served as experimenters. Subjects were children, \&-in years old, ezsolled in a remediai readiag program at the University School, BIoconiugtion: Indisna.

Design: Each child was fested on ic problems, four each of lengths 1-m stegs. A permutation of the eight lengths was given, then another and another umily four persutations hed besi adminiatered, so it is natural to divide training into form stages.

Eacin probdem consisted of one or more stages. A stage consisted os IInding the centrai parentheses in the given display, and noting its contents. The contents could be C.C, C.N, W.C, or WoW: or CNC. CWN, WWC, or WWI. The child was then to announce the correct substitution, show to him and available on a separate card. The correct substifutions were C for C.C; C.W, W.C, and CW. The

An intergretation of the atimai; to give atzueture to the axperiment, is this. Let C be a true sentence, and wialse one. Let - be the ccanective "OR", and "be "AND". Then the above "eubstitutions" are morely the truth table for these cennecives.
she panticular substitutions to be made were counterbajanced over the lengise cI the stimnius exyceasions and over atages of practice.
 2 to 8) were prapared. Thase vere permated independentiy for each subjach adithen the four disferant gnts were given in differeat oriers

 2neryays

 expanimartas yavreser in tin melool butisuas.
 belon.

Thgic Expezineant: Instunctions

 nisug.

 Blinim this cart, Do you see, it tolis a thaty cwe cas ve zoplaced

 4.7) How 1 150's finke the next probiest and sest if yeu can soive it an by youmell.

- 0 3 opereitriss

 3or uzaple, whare vorle ycu atert on thie probleaf

(2ne

Inesti Pig. 2-2 mout here

The makn wind of the oxperyment was to cotermion if the airinculty of attis agendes upon the couplexity of tite dituplay on che atse of

 the experimints The renult is that afferant sizes of cispley aiffored, own-all, with reapent to the proportion of c-it rersus C.c dsepzeys.
 testin shaspe cosralating clozeiy vith the proportica of coc and W-x ainplay.

The min inderetion of the rasultb thei een be obtelned is to
 dirginge artarage 4,32 and C-C displays average 2.26 nec., mad using

 only

5

Insert Fig. 2m3 aksit here

 aile so forth. The ratealz for this afsergeancy is fairiy obvious, if Te earume that twe chinciran ve vow simple atrategios to remember the cin and fin substitacilens. Hovever, those simpin strafegies are not

64

 atsplays. pritton in the wand pareathosis notaticn.

It scoms to the wxters that such a problew should be trasmandousiy Cifficulit for tine exilaminise innerncet parentineses are not tiat eary to firg. Hoverar: since no control experiment with sonventemeil parentheses was been sun, we cornot conclude thet the encircliag parentiksees are valueb3e. We can, hosever, obaerwe that the dificulty of such probleras does not reem to depena atrongity on the size of the probien, if the acizcling parentheses are used.

Thise last point may be of acme convenienre and use to che instructor of elemenjury logie, especially when it is taught in the lower conades. The initication is that childrea cen zapidis leasn routine mimplifications of very large arpressionas. This might tum outh to be a usaful way to orercons the fear of a lazge symbolic expreasion tiat so ofters appeasy anong college students.

Apposeatily, large manat 08 the tinas in this exponiment was
 stituticis. The lasmine cexvo shows the progress of learnity of the

 tab

 This wruld be reminiscent of the pinduge of Expo I gan ecrazings that a set. to be counted acotraitisy and fasty mast be cyenle of being orgsinged into parts.

 colum of eyeros in the problem, coneider the pricole

870940740
$+640680590$
and notice that the eero columas aerve as resta; they peruit the aubjact to wite dom tie digit being carried, to begia the next colvers with nothing carried.

The problem given above can be mitition in more ganerai terime as
x<00xx0x:0
$+2 \times 0$ examex
where x is always a digit greater 如an zors. In the problene ugod, the two digits ebove ane another eivays aided wh more timen 30, sc thet. s i is always carried except at 0 modumas,

The aim was to determine how the subjoct worked an suci proniews measuring errors wadt, where in the algoritim the expor seemed to ocesp, and the trate to colution of the problem.

Mere inspection of the algorition leads to the euppointion that
(a) Lemges numbers shculd take longery mat the tive movid be

 （0）

 Sormente tw

Method

Tabie 1．Problem starycture

1
？
ジャ

5
6 （1）

g． 3.

12
200，

 stitute the preblens that ase divided, by zeros, inte sizets of subme problems that ane 1itivig to be meat efficient. Problaris 3 and 7 are
 Finalis, Problea 6 has cight numers and a 0 , Dut tice 0 is 30 near the end at not to divise the groblem lato savoztent pieces. Theretcra, it is a costrel ate Group h, thet elso hes exshe numers and a 0 , but is sividod in halt. similariy, Probzem il is a control egainst 8, gad Probism 12 is a control againat 9; in ercin case the control has the sase number of $0 s$ and nwabs, but the os ere not plated so ss to divide the problem into equaj-sized and convenient parte.

A tctal of 12 school chilaxen, reading problems attending Univeraity Schooi is Blocmigeton, Indiana, ware testac. Eix Es were less 10-12,

 probion printed large on a ditio papery and tho subject wricech atrectiy

Each step of the ahild's woris was poliowec by 15 , who noted wicether the challa atartea correstly, added the nimbers, wrote down the unitis digit, ediried any value in fite tenep placis and then shitited to the next colume All exroxs vers recorded and jocated in the alog.

Reswlt

 of problam，and the men exrors，both for yruger（ $10-12$ ）and oldar （ $33-45$ children．In ordar to make tha reilntirubhipa easier to see， the mean thas to fomplets eacin problem has been divilaed by the zumber of columas in tise problam，since each solum ot the addition proizen is
 Gupally difficult except for their lengting and time and erpor were therofore proportional to length of the problems ell relues in the teble would be equal．

Table 2，				
	Younger	Chilidem	Glder	Cbituren
Problem	Y要要	L Mrors	［ 1	frrors
1．	9.3		3.8	0.06
\％\％\％	6.2	0.13	2.9	0.00
	9.0	0.00	4.3	0.02
	9.6	0.11	4.1	0.04
5．	9.1	0.07	3.5	0.06
6，cexiexiex	10.5	（0．36	4.1	0．ct
降	10.7	0．23	5.2	0.02
	$10.1{ }^{1}$	0.06	4.7	0.03
	9.3	0.03	4.3	0.04
	3.4	0.05	3.5	0.03
	11．2	0.08	4.5	0.05
	9.8	0.05	4.3	0.05

71

consider the follcuing control pairs. Problems 4 and 6 hass the sime diatribution, 共numars and a single 0 . Prcblea 4 is divided in balt, Problem 6 is out near the end. For the younger children, the inean times are 9.6 and $\mathbf{3 0 , 5}$, in fevror of the bettor division. The sider childrem gave mean tisses of 4,1 versus 4.1 , no difference.

Problem 8 gives 19 numbers divided by a single zerc in the midale, Problem 21 has $2 t s$ singie zero near the end. Kean times for younger gniidren vere 10.1 vergus 2i.2. The older childrim ghov times 4.7 vergus b.6, a gilght edivantage for the leas-wall-02ganized proiniano

Froblema 9 and 12 hase three 0 in 19 columen, dividing into Blociss of four aumbers or clusicred near the endo The yrungor childrem ghow times of 9.3 vergus 9.8 , whereas tha older chilizen sincr mexns (10). 4.3 ETO both problems.

Thus, in mill three cased, the yoxager chilaso do one mose evenis
 ciajintay ghow no difference as great as 2 percent between comparable e:zposfinentay, and contrin probleng.

Elocreve: the mase tina per column deas not vary over a very vide
 to solve auch an uddition peoblat it roughly proportionel to the mesber of stops in the problun.

In Ex

78

很 Fiz. 1,

Insert Pige 1 gout here

As wose zarco swoll intsoduced into a problan, the tive shontena as a linear funcion of the muber ois seros. Tuis relationshis is ginesn in Faso

Snecmb Fig. 2 ebout here

体eneraliy areaking, this means that the titise takea to add suo
 except thest tion subject is alightly slower with lexger nuajera. zero columai speed the prosess, teking only abolut 1.2 sec. per coivan, as compared with tothar number prixe that contume about 4.6 sec. $/$ colurn, for oldge chiviren. For the oldox children, it aoes not reatter whare the zeros a"e pust.

3 B

 blone the longer sequances derna, brize worfe than a whole boild problim

 effect, isthr zerics are saymatricaily located it in as if ther brasis kp the "rat", ox whytion of the subject, sad achunily stas hin

 muthen of this repuctition fask.

In Table 2 it will be noticed that the total error data are not

 trabjucta.

 adge at the problom and no nefiare o zero colum to the wight, (for tiany hove no digit to ampryl, and should aiurys be errorg in which the anawer given in che too gmazi. singe the number to be carried, in ading two mumars as constructer here, is alaky one.
noteling the date far all le subiscts, thene sara a cotal or 1532

 Fuxthomere, when thers is a ons cuxyy theze wewe total of 80

 oxrof thest wruli be symptomate of failing to carry a digit, giving so
 no atigit th cazry:

Siscussion

Trom tha hove malyses, we empinim that matify two iarge nizabers

 ty the lous profiem for the younger children. Thate helps if the lous protion ts chopped ints equalimsized partog and ininders if the zero colmber is near the right (beginting of thes weolem) in which case it apparentigy diarupts \& setir There is wo teacioncy for tase subjects to expecmintentiy by forgetting to carry the cacis.

Apparantiy, this trak, waich is familiar for the younger ckitaren
 of a sezial or algorithric skili. The younger children cannot camy the joug sequentian tank out very efficientis uniane it is divided fnto segmats. 'Fowever, tiey aiso make some use of a temporary "mental set" end apparently "camy won efriciently if that is required ail across the problem. Thus, we may envisage the ycunger children treating such a problaw a whole, with the various steps strongly interrelated and aither organized or lachogenized.

The older shilisen, for whom this is an easy and roucine task, apparentiy haadle it much less as an integrated task. That is, they adt evers very large zumbers and are hardxy bloved down by having a 19-digit number to work with. Dividing such a task up with zeros has no particular orgenizing effect, for the distributica of zeros makes no difference to auch older fillaren. Since the zeros emeble the subject to leave out part of a step, zeros syeed up the problem by taking leas time, and have no other detasicinze effect.

In the usuel ywychoiogicel soraguase, it would appear "mechauical" or "non-intuitiva" to handie the prsibleri as the older children do,
neither arganizing nor taiking adrantage of epeaiai, repecitiva peitterna. The very considerable syeed adventacie of the older chilarea bsifes auch a conciusion. Purthermore, it must be realized that there is not, in axithmetic in general, any pattern to the digits that mast be wided. phe "pattemin of equal specing of zexos, etc., is purely accilestral ana matringlen in the ecatext of audition. Whe gkili of madixg lange numbere should not ice snfluenced by accidental patterne of the numbers, for such petteras are in gencral irreleyant to the preinlem.
A. "oc

Thus we mast not be too hasty in easigning a positive value to organising procesges. In the preseat eaporiment, children 10032 have Morganissat informicion that is not geceraily usefti, ia adation, and as a rasuht give more interesiting data but are sas lows efflciont then oider children, $13-15$, wiso showed almont no signe of the argentretifne? tendencien made available oy the experimencer.

Exporivient IV

FREPARATORI SET TE MUUTIPTYIVG

Thare is a story told abcut fancient university in Cermany tacis When it was young and riw as an Amesican State University. It is said that a successiul burgher: visited the professor of mainematics at this German Bniversity asking advice in the education oi his oldest son, shoae talents the father wished to advance. He inquired whether it sould be satiafactory for his buy to study at the cermad universitso or whether he must be sent all the wey to Italy, The proteseor is supposed to have ropited, "It it will be enough that he be able:to add ard suberact, then your son sill be educated well enoigh in Gexmany-m but if he must also mitiply and divides then I fear he must be sent so stucis in İely."

Whether this story is tiue or not, it illustrates 话e inherent aterisulizy of multipking and diviaing, os compared to addition. In public achools for some tima, the most poveriul weapon employed in teachiug chiluren to autisply has been the "wultiplication takie", memorised and performed sith ramanable speed and skill by many, if not aiin, chilüren.

A inw years after this training she same ckild is in college, end If esked a simple groplem like What is $6 \times 4^{\mathrm{M}}$ will give the subwer finisis gutckly, and will probebly be correct. If asicai how he knope Gian enswer, the strudent replios that he just remembers it. Nosi of out college scucents perform the multiplication table as a well-practiced
sifill, and one atghe as roll was them her they wait eo her they

 somothing sbout its sizucture. if ane college student las memorized
 ahould detexnini the sunction of mewory freil as possibile. What,
 ain frat is tive prossause of seacin of mentry (if search is necessany)?

 ensure is also beying that be coes not perform any contious calcuistion.
genover, remanber thes in the maitiplication tobles 3-9, there aFe a totai of 51 ,
 ciats now be axranged in a aquare table. Then a Bubjecs "rematorns" cer e table snogerited ixi his manory. If that is trus, thith he actuaily may engege in sose sost of searchy and as a miult ma laster in arriving

 comter minez.

89

 calculete the onswor CFy if the answers are located in a toble, in

 rachor thas as respenges to externalitmingagisg stivili, wey celled E"ealculstion".
 stuanot matipitas two numers is either a ceicniaticn or a process

Tha presezt experiment exulea 50 coliege atuenats aotisg tive
 seatea the tro factors and as soca as pexsible after the second wes

 may help us undaratend the atructure of the skili.
 is eyparint that the apeed of compleising a ghem searah depeuds not
 If the probiem is $8 x 7$ and the subject has started a cosuch at 2×2 it may take him a long while to arrive at the solution. IP.

62

 wes so0n exrive at 8×7.

Therefors, to understera the sharin precess we nust atrempt to
 biame; and see if the subject's timas and errors revesl ayybing about the paiais triken between tiae two points. of course, this theory is mainsy mewephomisai, but it does sugstat that we wisis bo vany not oniy the paniom, but also the subject's preparstovy get or starting point.

To control preparatory set each sujject tas given a whole requence of maltiphicaition probiesic such as $7 \times 3 ; 7 \times 6,7 \times 4,7 \times 9=$

 and exceptional iters in the rist stoula be blored corn beceuse they are not to be truma in the imediate scosch area.

Bethoci

 mainity of a gmall boge recoxder ca waich both the experiminter's "ptheminus" and the aubject"s "responses" vere recorded.

 solving and they werc to multiply the two given gumbers as fast as pensitile E gere the two numbers verbaily about j, /2 aec. apart, and is reapuded verbally with tine answer. The next problem was presented about 3 mF sec. aster the response, so as to prevent I and s fanitng dnto a dxatha.

Sesponses rere recorded ces a 姐pe recorder, and 1ater the tape gas played befors a yoice-zey bystem end the fimes recorded manually,

 ©

 othar half ot thas 2tatios

 of the got; and the time

 fix 30-12 ot 要

Results

 Iongey ${ }^{\prime}$ but exception items averaged 1.00 gte., considerably slower. From this we may corcuile that the effort to cistablish a asteradntug

 chila learns the mitiplicerion tabis to to y y titen up to 4 , ofte.

calculate sesma to deperid more os the swailor than on the lareer digiti that is, the isnes are displaced up-sni-donn as mich if not moze dhem the Inet tilt, Increasing with the largor digit.

Another ponsibic means of wiltiylying in for the subjoct to lock tine enswer up in a trowny table. If so, then when given the ilirat

 time from the second factor tos the anariz, would cisyend upon the tixge Isetos. Fio mefter wist the first isactor is, the subject cen select his tow before the seccad factor, and the masiured raccion time, tegins: Figure 4-3 shors that the reaction fime does depend strongly on the zagnitrade of the second digit, as might be expectel fress thate hypothesis, but alme dapenai bearily on the first histity for notice that the curves in Fig: 103 are separated vicely, as well as being tilted.

Ineaxt Fisg. 4-3 about hare

 the areiser itself. . 3 Fig. $4-4$ is plabted thent man metication as

86

18.

FIt.43

 then curra, sugerestine thes the process of multiplyitag does sesi to dapsond upea both factoza and their magnitudes, but the result is hardly rianinitive ancuga to ailow us cosclude that the procass is accor

Inacrit Figo bat exit jere
 intrequeat exrers. For tuas yarpoes, considar only reapsasea from 40

A totas of 54 exrora ware roserved, and the nost gtriking fest is trist erist of the numbers givan in exper axe producta of other veluas within tin multiplication teble. Fxce 40-TR, the folxoring sumbens
 45, 48, 49, 54, 56, 133, 64, and 72.. Thus onsy tan of

9

Hg. 4

Further evidence that we deal with 3omething other ciben a counting es adding process is given by the fact thet 10 of the 54 erxors were of magnitude greater than 20 , that is, the istfereace between the anower given and the true product vas greater then 20 . Escobiaering ties high proportion of accurate rasponses, (a total oi 6,250 responses were exicited; of wisich 6,196 or about 99 percent were coment), errost as lave as 10 should be very rare if produced merely by a counting or adding mochanism.

Of those anavers biven that are wroug lut are procicts; in searonees in total mabor, 32 are procucts of one of the numbers in the aet tismea some wrone number. For exampleg giveat 7 a 6 the gubject might give reaponse 53 , which is equal to 7×9. sheraiere, the exswer ghtem ghares cac fentor witin the correct answer.

If mantylyiag consinted of inoing up vaiuse in a table, one
 but in ce in ersor with respect to the colusu; or vice-verean it no;

 gro very ditnicult prodacis, 6×9 a 54 and $7 \times 8 \times 56$. It was relativay eomon for subjects to confuse tasee broj a toceil of aine

 snatory Thas precess takes an average os about ose recuid.

One fins ides that vould relate tine mantionicaition table to csi-
 (or elfminate) posaible prociscts. One simple rale is thads; eny two ocal fectara give an odi product, and ir there is an oven fector tian preduce mat be aven. If the subject weat this fairlymenvass rule, then he

Tebie 4-1		
Frequang of Odd and Even Errors as a		
Function of Wheriber the Prodizet		
itself wea odd or fren		
Subject's Erroix	Coxrect Profugi	
	02	Evinis
0 DD	3	11.
ETES	$3{ }^{6}$	24

 onivy 3 are cdd. If the subject has been given a probicy uith an odd product, fhere are only two oftiox saí presuces thet cen be exrorc, and 7 a
 Nables 3 of 19 or . 358 of the exrore were oid. If the subject
 that can be rrous, and 3 cde. The prohability of ode product being given as an exror, ofrex tinings equas, yonia be $3 / 9=0333$. In the

These two calculathong give 84 accurase occamt of the vailuec in Takle 4m. To complete the avgumont, notice theit a texal of 19 out

9

Conclusicas

 table,
seecois, a get or aftermining tendency can bestablishea ovis a seruance of 10 sufa

 givotioly sicriflicert.

 $a \pm b=0 \times 8$.

 0\% 8

 and unconectousiy, Blecerid teke Ioager then countims to 27 .

 that appear in mentipileation table 88 products.

Whe excors aid net consigtenty 110 gust above or juast next to the

紋的

 [uncivisisw

 table.

One my:picture the procise approximately at folions. The subjoct in inde enichood training on the multiplicetion table, has mastered a

 Wher efven a euntiplicestorimable problem. His problem, therefore; is merely to select emong these values when given the spceific fuctors.

 *
 2arges prodrotg. This ingestinesis would take acects of the fect that
 yet amors are pettermed as they are.

 the (uma ent not fesseen; is the great importence of wat may be

Underwood and Echuls). If tic task ot ming plyiag, at least ghen
 enpeciaity rosif to ent thone numbery that are products in tia teble. By What machasisal these numbers are integrated and given strcag

 comect respomse. This grocess worket grecessfully si percent of the tive, in the present experiment, but wo form that when Erbjects did exr twey often got nedther factor righe end gaid no datectemie

 vgrenis mutficient to jield a correct answey.

[^0]: 2. The probability of oupfering exactly a fatlures formse geometric distribution and depends upon the preportion af correct atrategles, c.
[^1]:

